Insulin as a physiological modulator of glucagon secretion.
نویسندگان
چکیده
Glucose homeostasis is regulated primarily by the opposing actions of insulin and glucagon, hormones that are secreted by pancreatic islets from beta-cells and alpha-cells, respectively. Insulin secretion is increased in response to elevated blood glucose to maintain normoglycemia by stimulating glucose transport in muscle and adipocytes and reducing glucose production by inhibiting gluconeogenesis in the liver. Whereas glucagon secretion is suppressed by hyperglycemia, it is stimulated during hypoglycemia, promoting hepatic glucose production and ultimately raising blood glucose levels. Diabetic hyperglycemia occurs as the result of insufficient insulin secretion from the beta-cells and/or lack of insulin action due to peripheral insulin resistance. Remarkably, excessive secretion of glucagon from the alpha-cells is also a major contributor to the development of diabetic hyperglycemia. Insulin is a physiological suppressor of glucagon secretion; however, at the cellular and molecular levels, how intraislet insulin exerts its suppressive effect on the alpha-cells is not very clear. Although the inhibitory effect of insulin on glucagon gene expression is an important means to regulate glucagon secretion, recent studies suggest that the underlying mechanisms of the intraislet insulin on suppression of glucagon secretion involve the modulation of K(ATP) channel activity and the activation of the GABA-GABA(A) receptor system. Nevertheless, regulation of glucagon secretion is multifactorial and yet to be fully understood.
منابع مشابه
Maintenance of the postabsorptive plasma glucose concentration: insulin or insulin plus glucagon?
The prevalent view is that the postabsorptive plasma glucose concentration is maintained within the physiological range by the interplay of the glucose-lowering action of insulin and the glucose-raising action of glucagon. It is supported by a body of evidence derived from studies of suppression of glucagon (and insulin, among other effects) with somatostatin in animals and humans, immunoneutra...
متن کاملInsulin-like growth factor-1 is a negative modulator of glucagon secretion
Glucagon secretion involves a combination of paracrine, autocrine, hormonal, and autonomic neural mechanisms. Type 2 diabetes often presents impaired glucagon suppression by insulin and glucose. Insulin-like growth factor-I (IGF-1) has elevated homology with insulin, and regulates pancreatic β-cells insulin secretion. Insulin and IGF-1 receptors share considerable structure homology and functio...
متن کاملGlucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line.
Insulin secretion is controlled by a complex set of factors. Although blood glucose levels serve as the major stimulus of insulin secretion in mammals, insulin release is also modulated by amino acids, catecholamines, glucagon, and other, intestinal hormones. The identification of factors that modulate insulin production has engendered much interest because of their potential importance in the ...
متن کاملIntra-islet glucagon secretion and action in the regulation of glucose homeostasis
Glucagon, a key hormone in the regulation of glucose homeostasis, acts as a counter-regulatory hormone to insulin by promoting hepatic glucose output. Under normal conditions, insulin and glucagon operate in concert to maintain the glucose level within a narrow physiological range. In diabetes, however, while insulin secretion or action is insufficient, the production and secretion of glucagon ...
متن کاملArginine-induced insulin release is decreased and glucagon increased in parallel with islet NO production.
Nitric oxide (NO) produced by islet constitutive NO synthase (cNOS) is a putative modulator of islet hormone secretion. We show here for the first time that the release of insulin induced byl-arginine orl-homoarginine is inhibited and that of glucagon stimulated in parallel with the rate of islet NO production. It was found thatl-homoarginine was ≈25-30% less potent thanl-arginine as an insulin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Endocrinology and metabolism
دوره 295 4 شماره
صفحات -
تاریخ انتشار 2008